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Final Progress Report
Problem studied:

The overall objective of this work is to understand information flow on a network through the analogous
process of biological disease spread in a noisy environment. Currently, the PI is developing new multi-patch
models that address the issue of scalability, where the size of the groupings is determined by the accuracy and
scope of the results needed. She has developed a computational tool to predict changes in dynamics due to noise
probabilistically. This method numerically approximates the mechanisms of transport in a mathematical space,
and provides a way to visualize it using a matrix representation. Commonly, the only data available in the field
is the number of infected individuals reported. Using embedding techniques, this data can emulate the dynamics
of the full system and be used in our methods. In practice, the PI has successfully compared a stochastic
bifurcation in a controlled experiment to a theoretical laser model. The transport tools developed to date allow
control of the system by targeting or avoiding high probability regions. The PI has a working algorithm
submitted for publication and is planning its implementation in a future experiment.

Summary of the most important results:
1. Development of the continuous transition matrix

One important mathematical question is the precise effect of noise on an ensemble. We focus on the
dynamics of ensembles that obey deterministic dynamics, but are subject to continuously added noise. Since
stable configurations of interacting particles may be thought of as living in potential wells, changing the
dynamics to a new state may require escape from a given potential, and we consider the probability of
escape happening due to natural or imposed fluctuations. Escape is an example of a large fluctuation. If
fluctuations are small on average, the ensemble will continue to emulate the current state. Simple time
simulations from models have difficulty generating rare events like escape for proper analysis. Therefore,
we have designed a new, efficient technique that can be used approximate the probability density function
based on spatial averages. Our mathematical method is based on a stochastic operator formalism, which
identifies regions in phase space where a transition can occur. It describes the flow from each part of phase
space to another, and as the standard deviation of the noise is increased, flow occurs between basins. Using
the stochastic operator, we can construct a transition matrix, which yields the probability of transition
between basins due to noise. By identifying the regions where the solution has the highest probability of
switching states, controlling the dynamics may be realized.

2. Stochastic Prediction and Control

Predictability of seasonally driven diseases that are stochastic is necessary for the application of methods to
suppress future outbreaks. Many vaccine schemes are available for equilibrium diseases, but in the case of
non-equilibrium outbreaks, current methods may enhance outbreaks or fail to achieve their goals. To
address the problem of suppressing outbreaks in stochastic epidemics, we apply a new mathematical method
to a stochastic model to predict outbreaks before they occur, and then adapt a vaccine strategy that prevents
the outbreak from occurring. The theory exploits a transition probability description from small amplitude
incidence to outbreak dynamics, and generates a region of high probability transport of the most sensitive
regions to stochastic effects. Moreover, it allows us to monitor regions of stochastic dynamics that have a
high probability of preceding a large outbreak, which in turn leads to a design of a vaccine control strategy
to suppress outbreaks. We have developed a simple, but effective, general control technique that takes
advantage of complicated interactions of determinism and noise.




3. A noise induced bifurcation observed experimentally

The PI has completed a successful collaboration reproducing a 3-dimensional stochastic bifurcation both
experimentally and in a theoretical model. The physical model is that of a class B laser, which is perturbed
stochastically. The effect of the noise perturbations on the dynamics is shown to change the qualitative
nature of the dynamics experimentally from a stochastic periodic attractor to one of chaos-like behavior. To
analyze the qualitative change, we apply the technique of the stochastic Frobenius-Perron operator to a
model of the experimental system. The main result is the identification of a global mechanism to induce
chaos-like behavior by adding stochastic perturbations in a realistic model system of an optics experiment.
In quantifying the stochastic bifurcation, we have computed a transition matrix describing the probability of
transport from one region of phase space to another, which approximates the stochastic Frobenius-Perron
operator. This mechanism depends on both the standard deviation of the noise and the global topology of the
system. Our result pinpoints regions of stochastic transport whereby topological deterministic dynamics
subjected to sufficient noise induces chaos-like behavior in both theory and experiment.

4. Master’s thesis on coupled populations (in progress)

This thesis, by Kristen Viz, seeks to answer questions about disease dynamics and vaccination plans. We are
concerned with how a disease is spread through and between two populations that have seasonal contact
rates, or time-varying parameters. This has applications to understanding the behavior of disease spread
between a metropolitan city and its suburbs or between two neighboring countries with different vaccination
rates. The importance of mathematically simulating disease spread allows us to look into the future, possibly
forecasting potential problems as parameters change. We will seek to determine how the dynamics of a
larger population drives a smaller population, and vice versa. Also, we consider how the sizes of these
populations effect this relation. We will determine whether our model qualitatively captures the dynamics of
the current measles epidemic in Cameroon. If we can show it accurately reflects the actual data, we will be
able to mathematically manipulate the parameters in our model to suggest a method to minimize the
numbers of measles cases in Cameroon. This work is in collaboration with Derek Cummings and Donald
Burke from Johns Hopkins Bloomberg School of Public Health and Ira Schwartz from the US Naval
Research Laboratory.

5. Dengue collaboration

Multi-strain viruses are a significant threat because of their relatively quick evolution and complex
spreading mechanisms. The PI has been invited to participate in an infectious disease-modeling consortium
headed by Dr. Donald Burke, Professor of International Health and Epidemiology at the Bloomberg School
of Public Health at Johns Hopkins University. Based on data from 850,000 cases of dengue hemorrhagic
fever (DHF) occurring in 72 provinces of Thailand for the period 1983-1997, the Burke group has
discovered a spatial-temporal traveling wave in the incidence of DHF emanating from Bangkok using
empirical mode decomposition. Building on this work, the PI has collaborated to develop and analyze a full
four-serotype dengue model for that region with antibody-dependent enhancement (ADE). Using realistic
assumptions and precise parameters derived from data, we have analytically proven the existence of a Hopf
bifurcation as we vary the ADE factor, and have numerically proven the bifurcation to chaos. We are
currently working to validate the results of this new model by information provided by the data. Next, we
will extend these results to multi-patch networks, which add spatial information.




6. Undergraduate projects

The PI has completed advising three undergraduate projects. These students investigated problems
including: new seasonal models for malaria, the effects of time varying vaccination programs, and the
impact of immigrant subpopulations with lower vaccination coverage. The students participated in a group
meeting once a week to present useful analytic and numerical tools and a summary of their current results.
They presented their research as posters at the Undergraduate Sigma Xi conference at St. Joseph’s
University and as talks at the Montclair State University Sigma Xi student research conference.

7. Email virus spread on a network

In this time of rapidly growing computer speed and size, the public's need for network and Internet
connections is insatiable. New viruses can spread unchecked and infect large numbers of computers very
quickly. A simple defensive starting point would be to gather data that could determine whether the virus is
in the growth or die out phase, but complete data sets for the Internet are difficult, if not impossible, to
obtain. So, analysis must use random samples and identify general trends. We focus on viruses propagated
by email. The objective is to provide a model] that describes the long-term dynamics of email virus
propagation over a computer network. While complex, realistic models can quantitatively predict the
magnitude of the spread, simpler ordinary differential equations models qualitatively capture important
phenomena like die out. Drawing on the basic mass-action models that describe disease spread in biological
models, we use an SIS model with parameters fitted from real data from four viruses. Therefore, we can
capture the current basic reproduction number, predicting the persistence or die out of the virus.
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Many mechanical systems consist of continuum mechanical structures, having either linear or
nonlinear elasticity or geometry, coupled to nonlinear oscillators. In this paper, we consider the class
of linear continua coupled to mechanical pendula. In such mechanical systems, there often exist
several natural time scales determined by the physics of the problem. Using a time scale splitting,
we analyze a prototypical structural-mechanical system consisting of a planar nonlinear pendulum
coupled to a flexible rod made of linear viscoelastic material. In this system both low-dimensional
and high-dimensional chaos is observed. The low-dimensional chaos appears in the limit of small
coupling between the continua and oscillator, where the natural frequency of the primary mode of
the rod is much greater than the natural frequency of the pendulum. In this case. the motion resides
on a slow manifold. As the coupling is increased, global motion moves off of the slow manifold and
high-dimensional chaos is observed. We present a numerical bifurcation analysis of the resulting
system illustrating the mechanism for the onset of high-dimensional chaos. Constrained invariant
sets are computed to reveal a process from low-dimensional to high-dimensional transitions.
Applications will be to both deterministic and stochastic bifurcations. Practical implications of the
bifurcation from low-dimensional to high-dimensional chaos for detection of damage as well as
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global effects of noise will also be discussed. © 2004 American Institute of Physics.

[DOL: 10.1063/1.1651691]

Transition to chaos has been a fundamental problem in
nonlinear dynamics. The well known routes to chaos,
which include the period-doubling bifurcation route, the
intermittency route, the quasiperiodic route, and the cri-
sis route, are for transition to low-dimensional chaotic
attractors with one positive Lyapunov exponent. Transi-
tions to high-dimensional chaotic attractors with multiple
positive Lyapunov exponents have begun to be addressed.
Here we present a class of physical systems consisting of
linear continuum mechanical structures coupled to non-
linear oscillators. These systems arise naturally in many
important engineering and defense applications. Math-
ematically, such a system is typically described by a set of
coupled partial and ordinary differential equations,
which is generally not amenable to analysis. However, if
the system exhibits intrinsically distinct time scales, ap-
proximations can be made which mathematically reduce
the coupled system to a set of ordinary differential equa-
tions. Dynamically, this is equivalent to decomposing the
motions into those having slow and fast time scales, al-
lowing for numerical and physical analyses. If the cou-
pling between the continuum component and the nonlin-

Jilectronic mail: schwartz(@nlschaos.nrl.navy.mil
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ear oscillator is small, the dynamics can be regarded as
being confined to a slow, approximately invariant mani-
fold exhibiting low-dimensional chaos. Motions away
from the slow manifold are typically fast in time, are
high-dimensionally chaotic, and they become important
when the coupling is large or when there is noise present.
The system thus represents a paradigm for investigating
fundamental phenomena in nonlinear and stochastic dy-
namics such as the transition to high-dimensional chaos
and noise-induced high-dimensional chaotic attractors.
Here we shall demonstrate that this is so.

1. INTRODUCTION

In many mechanical structures of significance, such as
ships, aircraft, and space vehicles, there arise problems in
multi-scale dynamics due to various physical factors.2™ First
and foremost is that many of the structures we come to de-
pend upon are composed of many sub-structures covering a
wide range of sizes,® as in aircraft carriers or the space sta-
tion. Second, several orders of magnitude in flexibility may
be present, such as a tether attached to a satellite,7 or differ-
ent beam lengths in a large truss.® Such differences in spatial

© 2004 American Institute of Physics
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scales have recently led to a number of new multi-scale nu-
merical modeling techniques, such as those applied to the
finite clement method.!

As a result of such a wide range of sizes and stiffness
arising from coupled structures of differing elasticity, one
expects that there should exist a range of corresponding dy-
namical responses in frequency. Therefore, incorporating the
relevant physics together in a complex model will generate
multi-scale dynamics. That is, there is a set of dynamics
which may be complicated (such as high-dimensional
chaos), but has definitive multi-scale structure. An excellent
example of such a model is the class of driven coupled con-
tinuum mechanical structures which may be used to explore
nonlinear vibrations in mechanics.

In analyzing the dynamics of coupled continuum me-
chanical models, one nust consider them as spatio-temporal
systems which may support a range of dynamical time
scales. Excellent examples of multi-scale behavior have been
studied in the flexible spherical pendulum,’ the dynamics of
a flexible beam-oscillator system,'” and a flexible rod—
pendulum system.!" These examples demonstrate the idea
that in addition to a temporal splitting between fast and slow
tinte scales, there also corresponds a geometric splitting.
Multi-scale hchavior in mechanics is convenient since the
model in many instances may be decomposed into a global
singular perturbation problem.'? Based on a well-developed
theory, onc may construct rescaled systems for which the
dynamics, under suitable hypotheses, may reside on an in-
variant manifold."® Physically, this might occur if one struc-
ture is almost perfectly rigid (fast time scale) and attached to
a flexible structure (slow time scale). An excellent example
is the class of “fast slow” continuum systems which con-
sists of “soft” structures coupled to “stiff” structures.

This class of “‘soft stiff” engineering structures can
have very complicated dynamics. Since the stiff part of the
problem may be considered an approximation to a perfectly
rigid body, it is reasonable to assume that part of the com-
plexity originates within the soft, flexible structure. The geo-
metric splitting yields invariant manifolds which may in-
clude chaos within the soft structure.'® On the other hand, for
critical parameter choices, the dynamics may leave the mani-
fold, and sample the rest of the phase space, generating a
dimension changing bifurcation which includes both fast and
slow time scales."

Since multi-scale engineering structures may have a di-
mension changing bifurcation, techniques for statistically
quantifying the dynamics in space are needed. One such
powerful method is that of the method of snapshots, based on
the proper orthogonal decomposition (POD), or Karhunen--
Loeve (KL) techniques.''® First introduced to handle fluid
dynamics, these methods have been successful in quantifying
the dynamics in fluid -structure interactions,!”  spatio-
temporal feedback control,'® nonstationary flow transition
problems,"’ and aerodynamics foils.?’ They have been used
to quantify a dimension change bifurcation explicitly in a
soft--stift system operating near a resonant condition. In
quantifying the dynamics of a spatio-temporal system, the
K1 technique is a powerful tool to describe the modal struc-
ture, not only analytically but computationally as well. In
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contrast, if one wishes to compute dynamical dimension,
such as Lyapunov dimension,?! the linear variational equa-
tions need to be solved along the trajectory, which is prohibi-
tively expensive even for a modest system of ordinary dif-
ferential equations (ODEs).

Although the KL methods are useful for quantifying a
dimension change in dynamics, they do not necessarily ex-
plain the underlying cause of the bifurcation. In particular,
when we think of a dimension bifurcation, we think of a
change in dimension, abrupt or continuous, as a parameter is
changed. Normally, the parameter is changed deterministi-
cally, resulting in a change in bifurcation structure. This may
be explained as sufficiently sampling parts of an attractor off
of an invariant manifold. Such bursting is typically observed
to be chaotic, which arises from an underlying deterministic
chaotic saddle.”? However, another cause of dimension
changing chaos may be stochastic. That is, if sufficient noise
is added to a low-dimensional attractor, it may generate a
high-dimensional noise induced attractor with a new positive
Lyapunov exponent. Noise induced chaos, when produced
along with a dimension changing bifurcation, could cause
multi-scale behavior in continuum mechanics. Associated
with noise induced chaos is the idea of unstable dimension
variability (UDV).

Unstable dimension variability is the changing of the
number of local unstable directions along a typical trajectory.
Mathematically. it can be described in terms of how a system
violates the properties of hyperbolicity. This nonhyperbolic-
ity has been shown to be fundamental to chaotic dynamics,
particularly for the problem of shadowing of numerical tra-
jectories in higher dimensions.?>7 In Ref. 31, we reported
on noise induced chaos in a preliminary mechanics example.
There. noise was used to excite a positive Lyapunov expo-
nent.

In this paper, wc report on the status of dimension
changing bifurcations in both deterministic and stochastic
mechanical systems. As such, some of the material is neces-
sarily review. The paper is laid out as follows: In Sec. 11, the
full model of a rod pendulum system is derived as a nonlin-
ear coupled PDE ODE system. A Galerkin projection is
done to put the model in terms of an infinite system of
ODE’s, and then a finite dimensional model is extracted to
study the dynamics. In Sec. I, the bifurcation structure is
presented for the detcrministic systems derived in Sec. IL
Evidence of UDV is presented in the continuation diagrams.
Section T C explores dimension change bifurcations based
on KL methods, as well as Lyapunov spectra. Section 1V
explores the effects of noise on the dynamics.

Il. DYNAMICAL CONTINUUM MECHANICS

In general, the problems we consider here model linear
continua coupled to nonlinear oscillators. That is, the prob-
lem class is that of Jinear PDE’s which are coupled to one or
more nonlinear oscillators represented by ODE’s. Such
linear—nonlinear coupled systems are ubiquitous in many ap-
plications, and are observed to exhibit nonlinear vibrations in
experimcnts.m In this section, we restrict ourselves to models
of linear elastica in one spatial dimension. Such examples
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include cantilevered beams and extensible rods. In general, if
we let W(£,1) denote a measure of displacement as a func-
tion of space (£) and time (¢), and let x,(£,1) be a forcing
function, then the general equations of motion may be rep-
resented as

L W(E1)=2,(£1),
> (1)

] . do
517+[1 +G(W ,,)]sin 6+ m =0,

plus the appropriate boundary conditions. In Eq. (1), 6 de-
notes the angular position of an attached pendulum at a free
end of the elastica. The term G(W ;) is the additional accel-
eration imposed on the pendulum from the structure. Since
there is an external driving body force on the structure. the
function G(W ,,) will also contain a time varying source.
which will in general depend on another oscillator. such as a
mechanical shaker or periodic electric potential.

The differential operator, L, , is assumed to be linear,
and depends on a parameter which is a measure of spectral
splitting of the relevant time scales. For a cantilevered beam,
it has the form

LuW= Wt Wogeee+ 20m W see 2)
while for an extensible rod (detailed below)
L W= W~ W e+ 20, uW e (3)

Normally, the external drive is decoupled from the rest of the
structure. That is, it is assumed that the external drive is
one-way coupled to the structure. In this paper, we allow the
frequency dependence of the drive to depend weakly on the
dynamics of the structure itself.

A. Full PDE-ODE system

In formulating the dynamics of such a mutually coupled
system, we follow Refs. 13 and 22 in formulating in detail a
system based on Eq. (3). We consider a specific mechanical
system consisting of a vertically positioned viscoelastic lin-
ear rod of density p,, with cross-section 4, and length L,
with a pendulum of mass M, and arm length L, coupled at
the bottom of the rod and where the rod is forced from the
top harmonically with frequency Q and magnitude . The
rod obeys the Kelvin—Voigt stress—strain relation*” and £,
and C, denote the modulus of elasticity and the viscosity
coefficient. C,, is the coefficient of viscosity (per unit length)
of the pendulum and g is the gravitational constant of accel-
eration. The pendulum is restricted to a plane. and rotational
motion is possible. The system is modeled by the following
equations:

M,L,0+M ,[g—%,~iiglsin(8)+C,L,6=0,
A,pdi(x.)—AEu"(x,1)—A,Cui"(x,1)

—A,plg—%,)=0, {4)
where "= @/, and "= a7ax, with boundary conditions
. du dug
u(x=0,1)=0, AE, — =A,.E,—,——:T,,C05(H),
ax v=L ox ’
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Forcing

FIG. 1. Rod-pendulum configuration.

and where

T,=M,L,0°+M,(g—%,—iig)cos(6),
denotes the tension acting along the rigid arm of the pendu-
lum. The variable u(x,?) denotes the displacement field of
the uncoupled rod with respect to the undeformed configu-
ration at equilibrium, relative to the point 4, while uy de-
notes the relative position of the coupling end B of the rod
with respect to point 4. See Fig. 1 for a schematic of the rod
and pendulum system.

We further suppose that the drive at 4, given by the
function x 4(¢) in Eq. (4), is such that it comes from another
oscillator. We suppose that the oscillator is weakly coupled
to the pendulum through its frequency. Specifically, we
model the drive oscillator by

b, =0, + Q1+ P(i(x,0)) Dy — B (DI + DT)
=F(®,,9,,2,0),

Gy =~ Q1 +3 P(1i(x,1))) D + Dy — Do (BT +D3)
=F(®,,9,,2,0), (5)

where P is a projection onto a Fourier mode (see below),
and |Z|<1 is the coupling term that modulates the fre-
quency. Notice that when 3, =0, the solution of Eq. {5) con-
sists of sines and cosines of frequency w given the appropri-
ate initial conditions. In terms of the solutions to Eq. (5),
note that x (1) =D,(¢,3).

Equations (4) and (5) are nondimensionalized by the fol-
lowing variable rescalings:

= T=Ww,l,
§ L)_ 2 !) b
X i u
X”—LI’ . U= L le_'—Ba
P r P
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.1, 17,
4"_2~E 7\7,_,’ T 2w, 4L7p,
where
g w(2m—1) \/—E:
wpz ;“,:. (u,,,:—T‘“— E, l71=1,2,...,<7v‘,

ave the natural frequency of the uncoupled pendulum and the
spectrum of natural frequencies of the uncoupled flexible
rod, respectively, while ¢, and {, denote their damping fac-
tors.

Using the parameter rescalings, and setting time deriva-
tives equal to zero. the stable and unstable static equilibrium
configurations of the coupled rod and pendulum system are

given by (0. ,U) and (65 ,U), where

0(_.:0, asl‘ziﬂ',
/.L’ bl
U= [2(1+B)é— &%)

The normalized equations are thus
B+[1—Vg(7)— X, (7)]sin(0)+2,6=0,
P V(e =1 (Em) =8 ul (&, 1) =
V(§=0,1)=0, V'(é=17m)=—p’Ba’[1=Tcos(6)),

(6)

—plmr X (1),

where

V(E,n)=U&n)—UE), 0sésl, —o<r<+om,

and note that we redefine = #/d7 and ' = wat for the re-

muainder of the paper.

B. Projection onto a finite model

In carrying out our analysis, we will consider a reduction
of the ODE--PDE system in Eq. (6). This reduction is ob-
tained by performing a modal expansion of the rod equation,
where the displacement 1™ is expanded as V(§,7)
=3 Mu(T) ¢, (€). This results in an infinite system of
coupled oscillators,

1+ 2 (=1

e

7 -—X’A,,(T)}sin( 6)— 2_[1,{'),

. s T
Lm(H)nj:H P +2§I’ B
49, MA,

— (= 1) "2B[ & cos( #) —sin*(6)]

4#”1
—|—+(
m

-1 128 cos? (0)}X (n). (D

equivalent to Eq. (4), where L,,(¢) is the infinite lincar op-
erator

Lm(ﬂ)E 2 [(Sm/"*"( -0y ;'/2:80052(9)]-
J1

See Ref. 22 for the details of this transformation.
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Finally. consider the finite set of ordinary differential
equations obtained from Eq. (7) by truncating to the first N
rod modes and applying the additional rescalings {W, ¥}

X — Y~ . e
={0,0} and { > ppZop— 12t Z 2} ={ T » T} Obtaining

\I"]:‘I’z,
N
o= = 1= 2 (= 1) [((W.2) = aW, |sin(¥))
=
+2§p\1,27
\If3—F (¥3.74.2,Q),
®
‘P4=F2(‘I’3,‘V4,E,Q),
I‘LZZm_l Z‘)my
wiiZym=fv(¥,2). m=12,...,N,
where

ff\(\l' Z) Lm \,(‘I ){ Z"m l+ érz2m

—(—1)"" 17’3[\1,2 cos{\]fl)—sinz(ﬂf])]

4,
aw

-1H" g cosz(‘lf,)]a‘l',;},

‘I 3 ¥, are drive variables as defined in Eq. (5), and
L, L.(#) is the inverse of the NX N truncation of operator
,,,(0) F, and F, are given by the right-hand sides of Eq.

(5). Note that Eq. (8) is an autonomous system, and the cy-
clic variables, ¥ and W, are introduced to account for the
periodic forcing, which has period () when the coupling pa-
rameter 3 =0. For this paper. unless otherwise noted, we
consider the truncated system obtained by taking N=1. We
also considered the system in Eq. (8) with N=2 and N
=10 and found qualitatively similar dynamics. Notice that
the terms Z,,,—, correspond to the rod displacement ampli-
tudes, while the even indexed terms Z,,, are the rod velocity
mode amplitudes. The function f(V,Z) is similar to the one
defined in Ref. 13 in the case where = =0, and the derivation
may be found there.

The primary parameter governing the coupling between
the rod and pendulum is the ratio of the natural frequency of
the pendulum to the frequency of the first rod mode, u
=w,/w,. In the limit @, —%, the rod 1 perfectly rigid, u
——>0 and the system reduces to a forced and damped pendu-
lum. For 0<u<<1 sufficiently small, global singular pertur-
bation theory predicts that system motion is constrained to a
slow manifold, and the (fast) linear rod-modes are slaved to
the slow pendulum motion.'> For nonzero a (the amplitude
of the periodic forcing) the slow manifold is a nonstationary
(periodically oscillating) two-dimensional surface.

For our study, we set the number of modes in the struc-
ture to be unity, and consider the following reduced system:
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1:[r1 =,,

Vo= (mWy(—28,~ 4L, cos’ (V) + Bsin(2W)T,)
—sin(‘]’l)(4a‘1’4+4a37,— COSZ(\P . )\I}‘4
+a(1+2B+Z1+2L,Z,+ aW)))/(75),

Yy=W,(1 - (T34 + Q1 +oV,) )y,
e
Y,=W,(1—(V3+ W) - Q1 +oV,)¥;,

Z§=ZZ/M9

Zy=—Q2Bu—2Bmcos(V )Vi+7Z,+27{,Z,
+4aV,+2 B cos’> (V) (— 1 +aV¥ )/ (uwd),

where 8=1+2Bcos(¥,). In Eq. (9), ¥, and ¥, are the
pendulum position and velocity, W3 and W, are the drive
oscillator variables, and Z, and Z, are the rod mode position
and velocity. Notice that the singular perturbation parameter
denotes the rod variables to have a fast time scale compared
to the pendulum and drive. Also, the frequency of the drive
oscillator is a function of the pendulum momentum, which is
a feedback term. The system in Eq. (9) is. therefore, fully
coupled, which is a generalization of the more ideal case of
having a perfectly isolated drive.

li. BIFURCATION STRUCTURE OF THE
DETERMINISTIC SYSTEM

We now consider the deterministic onc rod mode model
obtained in Sec. IL. It is useful to first consider the deterniin-
istic model, without any added noise. The underlying dy-
namical structures of the deterministic system will determine
in what way additive noise manifests itself in the dynamics.
While Eq. (9) is much less complex than the original PDE, it
still exhibits a wide variety of complicated behaviors. In par-
ticular, when the amplitude a of the forcing is sufficiently
large, solutions of Eq. (9) are chaotic, and such solutions
with both one and two positive Lyapunov exponents have
been observed. In addition to the forcing amplitude a, the
behavior of solutions of Eq. (9) is dramatically affected by
the value of the coupling parameter u.

Since Eq. (9) is singularly perturbed for 0<u<€1, we
will obtain a description of the slow dynamics by closely
following the geometric approach adopted in Ref.
22, The slow manifold approximation, {Z,.Z,}
=H, (¥,,¥,,¥;,¥,) is obtained for Eq. (9) (with ¢=0),
using the method of Ref. 12. The slow manifold (given by
the graph of H,) is a submanifold in phase space on which
the slow dynamics reside, and which relates the rod motion
to the pendulum motion and periodic forcing. When u is
sufficiently small, the dynamics of Eq. (9) can then be ap-
proximated by the reduced system:
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\I’|=‘I’2,
V,=(wV,(—20,~4BL, cos’ (W) + Bsin(2F ) Ty)
—sin(W ) (4aW,+4aBmcos’ (W)W,

+ (1 +2B+H () +24,H () +aW )/ (76),

. s | (10)
\I,:;:\I,}(l '_(\P3+\I,4))+Q(l +U"\I’2)\I’4,

V=W, (1= (¥3+ V1)) - Q1 +oV) Vs

It is important to note that the above approximation is
valid only for u sufficiently small. In particular, it has been
noticed that when g is increased, the dynamics of the full
one rod—mode system given by Eq. (9) no longer remains on
the slow manifold, but exhibits a bursting characteristic. This
bursting is not directly observed in the system variables
themselves, but rather when observing the variable defined
by A=\(Z1—H,,(-))*+(Z;—H,(-))", where H, (-)
denotes the ith component of /,,. The variable A measures
the distance of the solution of the rod components of the full
problem to the slow manifold. For u sufficiently small, only
small bursts A<O(u) are observed. However, as u is in-
creased, the amplitude of bursts quickly increases.

Examining the variable A\ =Z,—H, ,(-) gives the dif-
ference between the actual rod displacement and the slaved
rod displacement as calculated using the slow manifold ap-
proximation. As u increases so that A is O(1) in amplitude,
A, has the appearance of a relaxation oscillation. That is, a
large excursion can be observed away from the slow mani-
fold approximation with succeeding bursts decaying in am-
plitude toward the slow manifold, and another large burst
may occur before the solution has reached the slow mani-
fold.

For small u, solutions of Eq. (10) agree well with solu-
tions of the full system modeled by Eq. (9). This ceases to be
the case as u is increased, and nontrivial fast dynamics de-
velop. We will consider two particular choices of the cou-
pling parameter, to illustrate the nontrivial fast dynamics
which develop. In the next subsection we examine the dy-
namics of Eq. (9) when the coupling is relatively small: u
=(0.086 875. For this value of u, system motion is no longer
confined to the slow manifold. Instead bursting off the slow
manifold is observed. We will then examine the dynamics of
Eq. (9) for the relatively large value of p=0.5025 in the
following subsection. Near this value of u there is an internal
2:1 resonance, and the observed bursting is much greater in
amplitude. For the simulations presented in the remainder of
this section, we set 8=1, {,={,=0.01. ¢=0.0001, and O
=1.9527 unless otherwise stated.

A. Lyapunov exponents and attractor bifurcation
structure: The singularly perturbed case

Recall that as u—0, there ceases to be any nontrivial
rod motion whatsoever, and Eq. (9) reduces to a forced and
damped pendulum. Increasing p amounts to increasing the
flexibility of the rod, and nontrivial rod motions independent
of the pendulum motion are observed. For the simulations of
this subsection, we set #=0.086 875, and vary «, while the
other parameters are as stated in the introduction of this sec-

Downloaded 02 Jul 2004 to 132.250.149.107. Redistribution suhjcct to AP license or copyright, see http://chaos.aip.org/chaos/copyright jsp




378 Chaos, Vol. 14, No. 2, 2004

pn=0.086875, 6=0.0001
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FIG. 2. The attractor bifurcation diagram for £=0.086875 and o
=0.0001, showing the rod displacement A\ =Z,—~H (¥, ¥,,¥;,¥,) as
a function of the forcing amplitude a. There is a stable periodic orbit for
a=<1.30.

tion above. We choose this value for p because it is large
enough that there is significant motion on fast time scales,
but small enough that our slow manifold approximation will
be reasonably accurate.

We consider first the attractor bifurcation structure of Eq.
(9). In particular, we will usc the bursting variable A, as a
function of a. We examine the Poincaré map defined by
strobing the flow whenever W ;=0 and W ,=1. For « suffi-
ciently small (A,=0) the pendulum is stationary and only
periodic motions on the fast manifold are observed. As «
increases through 0.17. the pendulum transitions to periodic
motion, and the resulting periodic orbit slaves the system to
the slow manifold. For a= 1.29, there is the sudden onset of
chaos. See Fig. 2.

To further elucidate the bifurcation structure of the one
mode model, we utilized the bifurcation continuation soft-
ware AUTO 97, using a as our continuation parameter. We
started the continuation calculation using a periodic orbit we
calculated numerically for &= 0.01. For this value of a, we
found the stable periodic orbit to consist of a motionless
pendulum and an oscillating rod mode. Physically, this cor-
responds to the pendulum hanging straight down, with the
only motion consisting of deformations of the rod with the
same period as the periodic forcing. There is a secondary
branch which is born in a saddle-node bifurcation at «@
~0.044. The saddle branch meets the first branch of nodes at
a period doubling bifurcation, while the upper branch of
nodes ends at a torus bifurcation at «=1.29. This agrees
closely with what is observed in the attractor bifurcation dia-
gram. See Fig. 3.

We additionally computed the Lyapunov exponents of
the one rod mode model, Eq. (9), shown in Fig. 4. The most
notable feature of the Lyapunov spectrum for u=0.086875
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FIG. 3. The continuation diagram.. The lower branch consists of a solution
in which the pendulum does not swing and only rod motion is present, while
the upper branch corresponds to nontrivial periodic motion of both the pen-
dutum and the rod. Solid dots denote a stable periodic orbit while open dots
denote an unstable periodic orbit. The upper stable branch exists for a
€(0.044,1.29). As « increases through 1.29, stability of the periodic orbit is
lost, closely corresponding with the behavior seen in Fig. 2.

is that for &= 1.75 chaotic orbits have one positive Lyapunov
exponent, while for a=1.75, chaotic orbits have two posi-
tive Lyapunov exponents, and the transition from one to two
positive Lyapunov exponents is smooth. This implies that as
the forcing amplitude « is increased, the chaotic attractor
increases in dimension.

Finally, we used the constrained invariant manifold
(CIM) method exposited in Ref. 22 to compute the approxi-
mation of the stable manifold of the chaotic saddle con-
strained to the slow manifold. Briefly, the method works by
finding those initial conditions on the slow manifold which
remain within €, of the slow manifold to time Tt under
evolution of Eq. (9). Figure 5 shows the projection of the
approximated manifold onto the pendutum variables ¥, and
W¥,. This set gives an indication as to the structure of the

xponents

punov E

Lya

F1G. 4. The Lyapunov spectrum for s=0.086 875. The most negative
Lyapunov exponent is not shown.
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FIG. 5. The stable manifold of the chaotic saddle, constrained to the slow
manifold, calculated using the CIM method and projected onto the pendu-
lum subspace (¥, ,¥,). The parameters used were u=0.086 875 and a
=1.2, while B8, 7, {,, and {, are as noted in the text.

invariants constrained to the slow manifold. The CIM
method parameters used were T+ =8.0 and €, =0.1.

B. Lyapunov exponents and attractor bifurcation
structure: The near resonance case

We next increase u to 0.5025. For this value of the cou-
pling, there is an internal 2:1 resonance in the system.

As in the previous subsection, we consider the attractor
bifurcation structure of Eq. (9), measuring the bursting vari-
able A, as a function of @. We again use the Poincaré map
given by strobing the flow whenever ¥;=0 and ¥,=1.
Since w is relatively large, we do not expect the slow mani-
fold approximation H,(-) to be very accurate. Indeed for
small, we observe that A, is no longer zero, but the slow
manifold approximation indicates the solution lies an O(1)
distance from the slow manifold. However, we still expect
that the observed stable periodic motions are slow. For «
~().88, there is the sudden onset of chaos, and the solutions
of Eq. (9) move far from the slow manifold approximation,
as shown in Fig. 6.

Using @ as our continuation parameter, we started the
continuation calculation using a periodic orbit we calculated
numerically for @=0.01 (see Fig. 7). For this value of @, we
again find the stable periodic orbit to consist of a motionless
pendulum and an oscillating rod mode. There is a secondary
branch which is born in a saddle-node bifurcation at o
~0.044. The saddle branch meets the first branch of nodes at
a period doubling bifurcation, while the upper branch of
nodes ends at a torus bifurcation at @~0.27. This agrees
closely with what is observed in the attractor bifurcation dia-
gram, as shown in Fig. 6.

Finally, we examine the Lyapunov spectrum of Eq. (9)
near resonance shown in Fig. 8. The most notable feature in
this case, is the sudden transition from a stable periodic orbit
to hyperchaos. In fact, in numerical studies on a mesh of
values of width 0.021875 from w=0.086875 to u
=0.5025, we did not observe a smooth transition from one
to two positive Lyapunov exponents for any w>0.086 875.
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p=0.5025, 6=0.0001

FIG. 6. The attractor bifurcation diagram for x2=0.5025 and o=0.0001,
showing the rod displacement A as a function of the forcing amplitude a.
A stable periodic orbit is observed for a=<0.88.

Rather, we observed an apparent discontinous change in the
distribution of Lyapunov exponents, similar to the behavior
observed in Ref. 34 where the sudden transition to hypercha-
otic behavior is observed in the same model with o=0, that
is. without feedback to the drive. The transition to hyper-
chaos occurs near a=~0.88, which agrees well with the ter-
mination of the lowest stable branch of nodes (see Fig. 7).
We again apply the CIM method to Eq. (9), this time for
#=0.5025, as shown in Fig. 9. Since the system is in reso-
nance and we are using the slow manifold approximation at
the edge of its applicability, we set the threshold e, =150,
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FIG. 7. The continuation diagram. The lower branch consists of a solution
in which the pendulum docs not swing and only rod motion is present while
the upper branches corresponds to nontrivial periodic motion of both the
pendulum and the rod. Solid dots denote a stable periodic orbit while open
dots denote an unstable periodic orbit. Note that the lowest stable branch
pictured ends in a saddle-node bifurcation (label 4) at o~ 0.88, correspond-
ing to the point in the attractor bifurcation diagram (Fig. 6) where a chaotic
solution is first seen.
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FIG. 8. The Lyapunov spectrum for p=0.5025. The most negative
Lyapunov exponent is not shown.

while keeping T =8. The large value for €, may be justi-
fied by the fact that the burst extrema observed in A, are
now much larger in amplitude. There is clearly an interesting
level of structure in the resulting set, though just how this set
should be interpreted remains an open question.

C. Dimension changing bifurcations

In order to examine the fidelity of the one rod mode
model, we examine the same model, but this time truncating
the rod expansion at 16 modes. We find that while the main
attractor bifurcations occur for smaller values of the forcing
amplitude @, the bifurcation structure has a similar qualita-
tive appearance to the one mode resonant case. Due to the
expense of calculating the slow manifold approximation, in
Fig. 10 we plot the first position rod mode against the forcing

FIG. 9. The stable manifold approximation of the chaotic saddle, con-
strained to the slow manifold. and projected onto the pendulum subspace
(W, .W,), calculated using the CIM method. The parameters used were
=0.5025 and a=0.7, while 8, 0, {,, and {, arc as noted in the text.
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p=0.5025, ¢=0.0001, N=16
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FIG. 10. The attractor bifurcation diagram for p=0.5025 and o= 0.0001
for the 16 rod mode model, showing the rod displacement as a function of
the forcing amplitude . A stable periodic orbit is observed for a=<0.32.

amplitude a. The behavior of the solutions is similar for
what we observe in the one mode resonant case. There is a
periodic orbit that abruptly transitions to a chaotic solution
near = 0.32.

We again ran AUTO on the 16 mode model as shown in
Fig. 11. The saddle structure is somewhat different from that
of the one mode resonant case shown in Fig. 7, but some of
the essential features are still observed. In particular, the
lower-most stable branch terminates in a saddle-node bifur-
cation near a=0.3, close to the value for a at which we
observe the first chaotic motion, as seen in Fig. 10.
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FIG. 11. The continuation diagram computed using AUTO. The lower branch
consists of a solution in which the pendulum does not swing and only rod
motion is present while the upper branches corresponds to nontrivial peri-
odic motion of both the pendulum and the rod. Solid dots denote a stable
periodic orbit while open dots denote an unstable periodic orbit. Note that
the lowest stable branch pictured ends in a saddle-node bifurcation (label 4)
at a=0.3, corresponding to the point in the attractor bifurcation diagram
(Fig. 10) where a chaotic solution is first seen.
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FIG. 12. The number of KL modes required to capture 99% of the system
energy, as a function of forcing amplitude a.

It is expensive to calculate the Lyapunov exponents for
this system, since for a system of N equations, one is re-
quired to integrate the N differential equations, plus N~
variational equations in order to approximate the Lyapunov
exponents. For the 16 mode truncation, we instead compute
the KL dimension of the attractor as shown in Fig. 12.
Briefly, the KL decomposition gives the optimal way to com-
pute an orthogonal linear expansion, in an energy sensc.
Thus, the first mode in a KL expansion will contain the
maximal energy possible for a linear mode, the second will
contain the second-most energy possible, and so on. Then. a
definition for KL dimension is the minimal number of KL
modes required to satisfy some (large) energy threshold.
Briefly. we describe how to compute the KL dimension, and
the reader should see Ref. 13 for details.

We consider the system given by Eq. (8), and define the
field to be the vector of continuous functions of time defined
by

U=V, %, 93,%4,Z,,Z3,.... 205 1, Zan) (1)
an
Computing the KL modes is based on a method which maxi-
mizes the variance and minimizes the covariance. For two
time sampling (¢,,,¢,), we define the nm entry of the corre-
lation matrix as

]

CnanWUT(ln)U(tm)' (12)
M is the number of time snapshots, and the indices n,m
=12, .M.

The “energy” of the system is quantified by measuring
the number of active modes, which is done by gleaning in-
formation from the spectrum of the correlation matrix C, i.e.,
by solving the eigenvalue problem

C}\k:)\kAk. (]3)
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The sum of the A, is the total energy of the system, and the
sum is used to normalize the spectrum. That way, we can
choose a threshold, say 99%, and pick those modes that are
in the sum. We can then define a KL dimension of the dy-
namics that consists of those modes that make up 99% of the
energy.

For a series of values of &, we computed the number of
KL modes required to capture 99% of the system energy. We
find that as « increases into the chaotic regime, the number
of modes needed to capture the system energy increases dra-
matically. This implies that the underlying chaotic solutions
are high dimensional.

IV. NOISE INDUCED CHAOS

In the previous sections, deterministic bifurcations were
considered in which both low and high dimensional dynam-
ics were observed. However, in many real engineering sys-
tems of interest, noise plays a definitive role with far reach-
ing consequences, as seen in Refs. 35-37. In fact, it is
possible to generate chaos using additive noise in mechani-
cally driven systems, as seen in the example of driven sto-
chastic mechanics presented in Ref. 31. In this section, we
wish to take the liberty to quantify how noise induced chaos
is related to a novel mathematical quantity related to the
unstable dimensionality of the system. Once the dynamical
systems are sufficiently high dimensional, it will be seen
how noise interacts with unstable spaces to produce positive
Lyapunov exponents. Since flexible continuum mechanical
systems produce high dimensional dynamics, the role of
noise will be seen to be play a prominent role in bifurcation
theory.

A. Unstable dimension variability associated with
noise-induced chaos and scaling law of Lyapunov
exponents

1. Noise-induced unstable dimension variability

An interesting phenomenon associated with noise-
induced chaos is that unstable dimension variability arises as
soon as the attractor becomes chaotic. Unstable dimension
variability means that, along a typical trajectory, the number
of local unstable directions can change. This is the type of
nonhyperbolicity that has been shown to be fundamental to
chaotic dynamics, particularly for the problem of shadowing
of numerical trajectories in high dimensions.”"*® Math-
ematically, unstable dimension variability can be described
in terms of the notion of hyperbolicity (or nonhyperbolicity).

Consider a chaotic set from an N-dimensional map. The
set is hyperbolic if the following three conditions are met:*
(1) At each point in the set the tangent space can be split into
an expanding subspace and a contracting subspace. Dis-
tances in the expanding (contracting) subspace grow (shrink)
exponentially in time; (2) the angle between the stable and
the unstable subspaces is bounded away from zero; (3) the
expanding subspace evolves into the expanding one along a
typical trajectory and the same is true for the contracting
subspace. Violation of condition (2) leads to nonhyperbolic-
ity with tangencies, which occurs commonly in low-
dimensional chaotic systems with only one unstable direc-
tion. Nonhyperbolicity with unstable dimension variability is
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caused by the violation of cendition (3), which occurs in
systems with more than one unstable direction, t.e.. high-
dimensional chaotic systems. In high dimensions, commonly
there arc systems that violate both conditions (2) and (3).

We can argue that when noise induces a chaotic attractor,
unstable dimension variability arises immediately. Consider
the common situation where there are two coexisting dy-
namical invariant sets with distinct unstable dimensions. For
instance, in the simplest case of a one-dimensional map, in a
periodic window an attracting periodic orbit with zero un-
stable dimensions coexists with a chaotic saddle with un-
stable dimension one. Besides periodic windows, another
situation is where there is a periodic attractor and several
isolated saddle periodic orbits. The stable and unstable mani-
folds of these orbits are close to each other and are about to
form homoclinic or heteroclinic intersections. The presence
of noise can materialize the intersections, creating a chaotic
set, the so-called stochastic chaotic saddle 0

For any periodic point on the attractor, under additive
noise of amplitude D a trajectory can be found in a ball of
radius D. If D is small so that the ball does not intersect the
stable manifold of the chaotic saddle, the final attractor of the
system will simply be a fattened version of the original pe-
riodic attractor. This is so because a random initial condition
leads to a trajectory that is confined in the vicinity of the
periodic attractor, although there can be transient chaos ini-
tially, in the sense that the trajectory may move toward the
chaotic saddle along its stable manifold, wander near the
saddle for a finite amount of time, and leave it along its
unstable manifold. Assume that for D=D,. the noisy ball
begins to intersect the stable manifold of the chaotic saddle.
For D> D, , there is a nonzero probability that a trajectory in
the vicinity of the original periodic attractor is kicked out of
the noisy ball and moves toward the chaotic saddlc along its
stable manifold. Due to the nonattracting nature of the cha-
otic saddle, the trajectory can stay in its vicinity for only a
finite amount of time before leaving along its unstable mani-
fold and then, enter the noisy ball at the original periodic
attractor again, and so on. For D= D,., the probability for the
trajectory to leave the noisy ball of the original periodic at-
tractor is small. Thus, an intermittent behavior can be ex-
pected where the trajectory spends long stretches of time
near the periodic attractor, with occasional bursts out of it
wandering near the chaotic saddle.

A consequence of the noise-induced intermittent behav-
ior is that there is generally unstable dimension variability
associated with a continuous trajectory. Under noise. both the
chaotic saddle and the original periodic attractor belong to a
single, connected dynamical invariant set. Since, in the ab-
sence of noise, periodic orbits on the chaotic saddle are all
unstable and the attractor is a stable periodic orbit. noise-
induced intermittency means that a trajectory moves in re-
gions containing periodic orbits with distinct unstable dimen-
sions. A feature that distinguishes this type of unstable
dimension variability with that in the literature® *” is that
here, the subsets with different unstable dimensions are lo-
cated in distinct regions of the phase space. whereas in high-
dimensional chaotic systems such as the kicked double
rot«wr,23‘34 unstable periodic orbits in these subsets tend to
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mix with each other densely in the phase space.

At a fundamental level, the appearance of unstable di-
mension variability implies the disappearance of the neutral
direction of the flow. Consider a three-dimensional flow in a
periodic window, where the periodic attractor contains no
unstable direction and the chaotic saddle possesses one un-
stable dimension. The role of noise, when it is sufficiently
large (D> D), is to link these two dynamical invariant sets
with distinct unstable dimensions. Now examine the local
eigenplanes that contain the neutral direction of the flow as-
sociated with the periodic attractor and the chaotic saddle. in
the local eigenplane at the periodic attractor, there is a stable
direction and a neutral direction. Consider an eigenvector in
the neutral direction. In the eigenplane of a point in the cha-
otic saddle, there is an unstable direction and a neutral direc-
tion. When a trajectory is driven by noise from the periodic
attractor to the chaotic saddle along its stable manifold, the
eigenvector can lie anywhere in the local eigenplane of the
corresponding point in the chaotic saddle. After a time, the
vector will be aligned in the unstable direction, due to the
expanding dynamics of the chaotic saddle. Distances along
the neutral direction of the original periodic attractor can no
longer be preserved. This feature of a noisy chaotic attractor
is fandamentally different from that of a deterministic cha-
otic attractor, where a neutral direction always exists. Thus
we see that unstable dimension variability plays a fundamen-
tal role in shaping the topology of the noisy chaotic flow.

2. Scaling law of Lyapunov exponents

We shall argue that for noise-induced chaos, the largest
Lyapunov exponent of the attractor obeys a universal alge-
braic scaling law:

N (D)~(D-DJ)*, for D=D,, (14)
where the scaling exponent « depends on system details.
Consider an (N+ 1)-dimensional flow in a periodic window.
In the absence of noise, the chaotic saddle has K, positive,

one zero, and K, negative Lyapunov exponents (K,+ K,
=) which can be ordered as follows:

S+ S S+
)\KMB)\KM*IZ.“)\l >0
L S - VL L (15)

The periodic attractor has one zero and N negative expo-
nents, as follows:

0=AP0> AP >N ET (16)
For D<D,_, an asymptotic trajectory is confined in the
neighborhood of the periodic attractor, so the largest
Lyapunov exponent of the noisy attractor is simply X,
=\"°=0. For D=D, (after the transition to chaos), A is
approximately given by

N~/ DI+ f(DINE, = [ DINR, (an

where fp(D) and f5(D) are the probabilities that a trajectory
stays near the original periodic attractor and the chaotic
saddle, respectively. Because of the averaging effect of noise,
we expect the dependence on noise of the largest Lyapunov
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exponent )\zu of the original chaotic saddie to be weak. Thus
the main dependence of A on noise comes from fg(D), the
frequency of visit to the chaotic saddle, which is determined
by the measure of its stable manifold in the noisy ball of the
periodic attractor.

Consider an N-dimensional Poincaré map corresponding
to the (N+ 1)-dimensional flow. For a ball of radius €, the
natural measure of the stable manifold contained within is
proportional to

Ed"': ( GN)d-‘ /N,
where €" is proportional to the volume of the ball and d; is
the information dimension of the stable manifold of the cha-

otic saddle. Using the Kaplan- Yorke conjecture?' for chaotic
saddles,”! d, is given by

HS = (A3 +..+A57)

ds:Kx+J+ S+ s (18)
N
where J is an integer determined by
A NSNS =S AT ST, (19)
and H® is the forward entropy of the chaotic saddle:
K, |
HS=2 \5*——. (20)
=1 T

Here 7 is the average lifetime of the chaotic saddle on the
Poincaré map. (As a practical matter, 7 is in the unit of 7, the
average time that a typical trajectory crosses the Poincare
section.) For D= D, the volume of the noisy ball in which
the stable manifold of the chaotic saddle lies is proportional
to: ('D"V—Df)‘ We thus have

A |~ ( DN_ D‘:'r)‘l,\ IN ( D— D(.)((.
which is the scaling law (14) with the algebraic scaling ex-
ponent given by
HS= (N7 4+ +N5T)

K +J+
’ )\3 I

o= N @n
Numerical support for the scaling law can be found in Refs.
31 and 42.

B. Noise induced bifurcation and chaos in mechanics

We continue with two examples of how small, additive
noise induces chaos and unstable dimension variability in
this mechanical system. In particular, we study the transition
to stochastic chaos when we add stochastic perturbations of
the form

dy

—=F(y.p)+D&(1).

dt

where F is the deterministic vector field of the mechanical
system defined in Eq. (9). p represents the vector of param-
eters, and DE(¢) is the additive Gaussian white noise with
standard deviation D). Note that &(r) is an six-dimensional
vector whose components are independent Gaussian random
variables of zero mean and scaled variance. Explicitly, the
noise is scaled in each component so that it does not domi-
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nate components with smaller magnitudes. We find the ap-
proximate range of each variable when it is in its steady state
and then scale the standard deviation of the noise by those
factors so that it effects each component equally. Noise is not
added to the components representing the drive [W; and ¥,
in Eq. (9)], so those variances are set to zero. We use the
standard second-order Milshtein method,” to integrate the
stochastic differential equations. We also integrate the Jaco-
bian and calculate the Floquet multipliers to find the
Lyapunov exponents based on time averaging. By fixing the
parameters of Eq. (9). we examine the dynamics of the me-
chanical random dynamical system as the noise amplitude is
increased from zero.

First, we study the system with small coupling using the
parameters u=0.086875 and «=1.8. With no noise, the
dominant behavior of the system is a chaotic attractor on the
slow manifold characterized by one positive Lyapunov expo-
nent. As expected with an autonomous flow, the second larg-
est exponent is the null Lyapunov exponent, which repre-
sents the neutral direction associated with the flow. The four
remaining Lyapunov exponents are negative. Adding noise to
the system excites a nearby high dimensional chaotic saddle
off the slow manifold and the potential number of unstable
(dynamical) dimensions is increased from one to two. Nu-
merically, we observe that increasing the standard deviation
of the noise (D) increases the third Lyapunov exponent, the
largest negative exponent, in a continuous manner. When the
third exponent is close to crossing zero, the null exponent
increases away from zero, lcaving no zero valued Lyapunov
exponent within a small window. Define the beginning of
this transition D,. This fundamentally disturbs the noisy
flow, resulting in two positive Lyapunov exponents and the
third largest exponent approaching the zero value from the
negative side. See Fig. 13(a) for a graph of this transition.
We approximate the algebraic scaling of the Lyapunov expo-
nent with a least squares fit as @=1.5143, having a maxi-
mum error of 0.5786, as shown in Fig. 13(b).

Due to the small coupling parameter, the deterministic
system motion is constrained to a slow manifold, which is a
four-dimensional surface. The chaotic attractor resides on
this surface, but random trajectories experience on--off inter-
mittency, which is characterized by a bursting behavior off
the surface. This is common for chaotic attractors having
periodic orbits with unstable eigenvectors transverse to the
attractor. As an orbit approaches the attractor, it sometimes
lands near one of these repeltiors, which ejects it from the
neighborhood of the attractor. Then, the trajectory visits the
chaotic saddle off the slow manifold for a period of time
until it begins its approach back to the attractor once again.
Measuring the distance of a trajectory off the slow manifold
reveals the frequency of this process, and an average bursting
rate can be calculated. When noise is added to the system,
the bursting rate increases with the standard deviation of the
noise. This is expected since the noise facilitates the process
of a trajectory landing near a repellor. If we track the Euclid-
ean distance of the trajectory in the first two components
from the slow manifold, we can set a threshold to define
bursting rates. By recording the fraction of iterates in a long
trajectory as a function of the standard deviation of the noise,
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FIG. 13. For the noisy system in the small coupling case, (a) the second and
third Lyapunov exponents versus D about the transition, and (b) algebraic
scaling of the second largest Lyapunov exponent with D—D,.. The solid
line in indicates the theoretical slope a.

we see a change in behavior at the same critical value D,
where the number of positive Lyapunov exponents increase.
See Fig. 14. The data follow exponential growth, and using a
least squares fit. we can fit line to the natural log of the data
with slope 11.6296, which has a maximum error of 0.2143,
as shown in Fig. 14.

Another quantity that we can measure is the interspike
interval. This is the time between bursts away from the slow
manifold. Recording the interspike intervals along a random
trajectory also indicates how noisc increases the frequency of
transients on the chaotic saddle. We calculate the interspike
interval using the same threshold as the burst rate. Because
the distance measurement does not have a pattern in time or
amplitude, it is difficult to define the beginning and end of an
individual burst. Therefore, we define the beginning of each
burst as the time when the distance increases above the burst
threshold. The interspike intervals are the intervals between
these times. Consider the sequence of interspike intervals for
a random trajectory using the parameters u=0.086875, «
=1.8, and D=0.25. The histogram of interspike interval
(IST) sequence follows a semilog scaling law. The slope of
the least squares fit is —0.1275 with a maximum error of
1.9619, as shown in Fig. 15

At larger coupling parameters. the dominant behavior of
the system is a periodic attractor. Therefore, with no noise,
all the Lyapunov exponents are negative except for the null
exponent. The addition of noise emulates chaotic behavior,
which is observed by the bifurcation in the Lyapunov expo-
nents from zero to two local unstable directions. We use the
parameters w0 =0.5025 and «=:0.65 as an example in Fig.
16. Notice that the two largest exponents increase in a con-
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FIG. 14. For the noisy system using the parameters x=0.086 875 and «
=1.8, (a) the bursting rate, and (b) algebraic scaling of the bursting rate.
The solid linc in indicates the slope.

tinuous manner above zero and the third largest approaches
zero from the negative side in Fig. 17(a). This is a new type
of transition to noise induced chaos. The largest Lyapunov
exponent follows an algebraic scaling similar to the one
shown in the small coupling case. We use D.=0.002938,
which results in a linear fit with slope 1.4973 and maximum
error of 0.8087. The second largest exponent also follows an
algebraic scaling, but it increases from a negative value.
Therefore, we must translatc the Lyapunov exponent by that
negative value so we can use the natural log. We use the
value of the Lyapunov exponent at D, called L., and find
In(L—L,) as we increase D from D, . This results in a linear
fit with slope 1.5090 and maximum error of 0.8198. Note the
similarity in this scaling to that of the maximum Lyapunov
exponent. Graphs of each of these fits are shown in Fig.
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FIG. 15. Thc interspikc interval statistics for the parameters u
=0.086 875, o=1.8, and D=0.25.
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17(b). Because this example uses a large coupling parameter,
the dynamics are not dominated by the slow manifold and
we cannot compute bursting statistics similar to the previous
example.

V. CONCLUSIONS

We have explored a class of linear continnum mechani-
cal systems coupled to a nonlinear oscillator from a dynami-
cal systems point of view. In previous work, such systems
were ideally driven from an outside source. In the model
presented here, we considered a more general case where the
frequency of the driver 1s slightly perturbed by the momen-
tum change of the mechanical system to which it is con-
nected. We have derived an ODE-PDE system describing
the physics, and then showed how to construct the modal
decomposition into an infinite set of ODE’s. A truncated
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FIG. 17. These graphs use the noisy system with large coupling parameters:
#=0.5025 and a=0.65. (a) A close up of the three largest Lyapunov ex-
ponents near the transition to stochastic chaos. (b) The algebraic scaling for
the two largest Lyapunov exponents. The Jargest exponent is shown in black
and the data arc plotted In(L) vs In(D—D,). The sccond largest is in gray and
the data arc plotted In(Z—L.) vs In(D—D,). Both lincar fits have slope close
to 1.5.
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model was then derived for analysis. in which the system
was described as a slow- fast time scale system, which could
be analyzed using singular perturbation theory.

The deterministic system was analyzed for its bifurca-
tion structure, which included routes to chaos, as well as
torus bifurcations. However, one of the interesting bifurca-
tions observed was that of a dimension changing bifurcation.
When the singular parameter (x) was small, one could ob-
serve chaos constrained in a neighbor of an underlying in-
variant manifold. However, increasing a parameter, such as
amplitude a drive term in Eq. (9), would cause the dynamics
to burst off the manifold into the ambient space. Accompa-
nying sufficient bursting was the appearance of an additional
Lyapunov exponent, signaling a change in dynamical dimen-
sion.

Since the invariant slow manifold is an unstable object at
appropriate parameters. constraining the dynamics to the
manifold reveals a chaotic saddle structure. Such a structure
is important when examining both deterministic and stochas-
tic bifurcations from low to high dimensions.

One important aspect of the noise induced bifurcation
was quantifying the relationship of the change in Lyapunov
exponents with respect to the standard deviation of the noise.
Here we used the unstable dimension variability of the sys-
tem to show explicitly in a mechanical system that the expo-
nent obeys a universal scaling law. It is a remarkable fact that
the scaling actually persists over a wide range of noise am-
plitudes. It is also an interesting observation that the change
is continuous, even when the deterministic changes from pe-
riodic to hyper-chaotic behavior are discontinuous.

Several areas of inquiry are suggested by the current
study. First, recent work has shown that sudden changes may
occur as a dimension changing bifurcation when mechanical
systems of sufficient complexity are operated near resonance.
Since we observe such changes in simple prototypical sys-
tems, as we do here, it appears that many other systems may
exhibit the same nonlinear vibrations. If so, novel controls
may be designed based on the invariant manifold theory.
Moreover, such control may be used to spread energy into
higher heat dissipative modes, or other governing devices,
making energy transfer from one part of a structure to an-
other more efficient and directed.

On the other hand, since additive noise modifies the dy-
namics and its dimension continuously, it may be used a
better probe for nondestructive evaluation. By comparing the
pristine system to Jater use. one may use time series tests for
nonstationarity to explore controlled frequency responses by
adding noise.

Other areas of interest include nonlinear elasticity, dif-
ferent boundary conditions, such as clamping, and higher
dimensional structures. such as trusses.

ACKNOWLEDGMENTS

1.B.S. is supported by the Oftice of Naval Research.
D.S.M. is currently an NRC post doctoral fellow. Y.C.L. is
supported by AFOSR under Grant No. F49620-03-1-0290.
L.B. is supported by DARPA under Grant No. DAAD19-03-
1-0134.




. v N

386 Chaos, Vol. 14, No. 2, 2004

"I R. Hughes, G. R, Feijoo, L. Mazzei, and J. B. Quincy, Comput.
Methods Appl. Mech. Eng. 166. 3 (1998).

IN, Hori and K. Seto, JISME Int. ). Ser. C 43, 697 (2000).

YHL M. Mabic and C. E. Reinholtz, Mechanics and Dynamics of Machinery
(Wiley, New York, 1986).

11D, Smith. Gears and Their Vibration (Marcel Dekker, New York, 1983).

*$. Shaw and C. Pierre, J. Sound Vib. 164, 85 (1983).

o1y, ¢, Zimmerman, Inverse Probl. 8, 93 (2000).

"A. Steindl and H. Troger, Nonlinear Dyn. 31, 257 (2003).

§X. H. Ma, A. F. Vakakis, and L. A, Bergman, AIAA 1. 39. 687 (2001).

*1. T. Georgiou and L. B. Schwartz, Nonlinear Dyn. 25, 3 (2001).

1T, Georgiou, 1. Schwartz, E. Emaci. and A. Vakakis, J. Applied Mech.
Trans. ASME 66, 448 (1999).

"I T. Georgiou and 1. B. Schwartz, J. Sound Vib, 220, 383 (1999).

"N, Fenichel, J. Diff. Eqns. 53. (1979).

1T, Georgiou and 1. B. Schwartz, SIAM (Soc. Ind. Appl. Math.) J. Appl.
Math. 59, 1178 (1999).

M1, B. Schwartz and 1. T. Georgiou, Phys. Lett. A 242, 307 (1998).

'S1.. Sivovich, Physica D 37, 126 (1989).

161 Sirovich. M. Kirby, and M. Winter, Phys. Fluids A 2, 127 (1990).

17 A, E. Deanc and C. Mavriplis, ATAA 1. 32, 1222 (1994).

| Triandaf and 1. B. Schwartz, Phys. Rev. E 56, 204 (1997).

. A. Christensen, M. Brons, and J. N, Sorensen, SIAM J. Sci. Comput.
(USA) 21, 1419 (2000).

2§ ', Hall, J. P. Thomas. and E. H. Dowell, AIAA J. 38, 1853 (2000).

21], L. Kaplan and J. A. Yorke. in Lecture Notes in Mathematics, edited by
H. O. Peitgen and H. O. Walter (Springer, Berlin, 1979), Vol. 730.

21 M. Morgan, L. Bollt, and 1. B. Schwartz, Phys. Rev. E (to be pub-
lished).

25, P, Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Phys. Rev. Lett. 73,
1927 (1994).

27 Saver. €. Grebogi, and J. A, Yorke, Phys. Rev. Lett. 79, 59 (1997).

g ). Kostelich, L Kan, C. Grebogi, E. Ott, and J. A. Yorke, Physica D 109,
81 (1997),

*y.¢. Lai and €. Grebogi, Phys. Rev. Lett. 82, 4803 (1999).

Schwartz et al.

Ty -C. Lai. DL Lemer, K. Williams, and C. Grebogi, Phys. Rev. E 60), 5445
(1999).

2§, Barreto. P So, B. J. Gluckman, and S. J. Schiff, Phys. Rev. Lett. 84,
1689 (2000).

;. Barreto and P. So, Phys. Rev. Lett. 85, 2490 (2000).

WH. Kantz. C. Grebogi, A, Prasad, Y.-C. Lai, and E. Sinde, Phys. Rev. E 65,
026209 (2002).

3y _C. Lai, Z. Liu, L. Billings, and 1. B. Schwartz, Phys. Rev. E 67, 026210
(2003 ).

2y Marven. Introduction to the Mechanics of a Continuous Medium
(Prentice-Hall, Englewood Cliffs, 1969).

33, . Doedel, A. R. Champneys, T. F. Fairgricve, and Y. A. Kuznctsov,
AUTO 97, Continuation and Bifurcation Software for Ordinary Differential
Equations (with HomCont).

M1, B. Schwartz, Y. K. Wood, and 1. T. Georgiou, Comput. Phys, Commun.
122, 425 (1999).

*N. S. Namachchivaya and N. Ramakrishnan, J. Sound Vib. 262, 613
(2003).

36N, S. Namachchivaya and H. J. Van Roessel, J. Appl. Mech. Trans. ASME -
68. 903 (2001,

31 Amold. N. S. Namachchivaya, and K. R. SchenkHoppe, Int. I. Bifur-
cation Chaos App!. Sci. Eng. 6, 1947 (1996).

31 Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields (Springer-Verlag, New York,
1983).

31 Billings and L. B. Schwartz, J. Math. Biol. 44, 31 (2002).

“0f . Billings, E. M. Bollt, and I. B. Schwartz, Phys. Rev. Lett. 88, 234101
(2002).

4IB. R. Hunt, E. Ott. and J. A. Yorke, Phys. Rev. E 54, 4819 (1996).

27 Liv. Y.-C. Lai, L. Billings, and 1. B. Schwartz, Phys. Rev. Lett. 88,
124101 (2002).

5 Cypanowski. P. Kloeden, and J. Ombach, From Elementary Probability
10 Stochastic Differential Equations with MAPLE (Springer, New York,
2002)

Dowe loaded 02 Jul 2004 to 132.250 142 107, Rodistribution subject to AP licerse or ooy yrights see http://chaos.aip.orglchaos/copyright jsp




